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Abstract

Both analytical and finite element investigations are performed for the various static and dynamic aspects
of the mode jumping phenomenon of a simply-supported rectangular plate heated deeply into the post-
buckling regime. For the analytical method, the von K!arm!an plate equation is reduced to a system of non-
linear ODEs by expressing the transverse deflection as a series of linear buckling modes. The ODEs,
combined with the non-linear algebraic constraint equations obtained from in-plane boundary conditions,
are then solved numerically under the parametric variation of the temperature. The results are checked by
the finite element method, where a hybrid static–dynamic scheme is implemented. The contribution of each
assumed (buckling) mode component is studied systematically. Characterized by the strong geometrical
non-linearity, the secondary bifurcation point of the thermally loaded plate with fixed in-plane boundary
conditions occurs far beyond the primary buckling point, and the jump behavior cannot be predicted
correctly without sufficient assumed modes. Stationary bifurcation analysis indicates that while the post-
buckling deflection before mode jumping is composed of pure symmetric modes, additional pure
antisymmetric modes will appear after the occurrence of the snapping and they play the role of destabilizing
the equilibrium. Furthermore, by monitoring natural frequencies and modal shapes, we find that a mode
shifting phenomenon (the exchanging of vibration modes) exists in the primary post-buckling regime.
Breaking of the symmetry of the dynamic modes is also found. By introducing a linear temperature
sweeping scheme, transient analysis is performed to capture the snapping phenomenon dynamically, which
occurs with moderate heating ratio. Comparison between the analytic and finite element results shows good
agreement.
r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the most interesting aspects of the post-buckled equilibrium behavior of flat plates and
panels is that they may exhibit finite jumps in their buckled modes when subject to high levels of
compressive axial load. This form of secondary bifurcation, or mode jumping, is associated with
subtle interplay between modes and has received considerable attention in Refs. [1–20].
After Stein’s initial observation of such transient change in the post-buckled deformation states

in a compression test of a multi-bay, flat aluminum plate [1], numerous analytical studies of the
snap phenomenon and related issues have been performed on compressively loaded plates [2–9].
Linear eigenvalue analysis (see, for example, Refs. [3,4,21]) indicates there exist many compound
bifurcation points in the plots of critical loads versus the aspect ratio for various boundary
conditions. Thus, it seems reasonable to assume that such critical loads are generated by a
splitting process of the compound points by the variation of the aspect ratio from a particular
value giving the multiple eigenvalues, and that the jump of the post-buckled modes caused by the
secondary instability of the equilibrium can be explained by coupling effects between the
competitive modes [6].
Many of the previous efforts exploring the post-buckling behavior and snap phenomena of

axially compressed plates are carried out by using modal approximations, with the transverse
deflection represented by a series of linear buckling modes [2–9,13,22–24]. However, as pointed
out by Stoll [9], analyses using only two-term representations of the transverse displacements have
failed to predict the snap phenomena of simply-supported plates [5,8,15]. With additional terms
incorporated, or by using different approaches, the secondary instability is predicted [3,4,6,9,21].
The failure of the prediction of the secondary buckling may be attributed to the ‘‘contamination’’
of active co-ordinates—the assumed modes—by the passives—usually the higher modes for
square plates [25].
The expansion of results obtained from a particular aspect ratio to a range of lengths has been

achieved by Nakamura and Uetani [6] and Everall and Hunt [3,4,21,25]. Nakamura and Uetani
systematically identified the consistent set of transverse deformation terms which is required to
accurately predict the mode jumping for simply-supported plates over a range of lengths.
Alternatively, Everall and Hunt comparatively studied the mode jumping in the buckling of struts
and plates for a particular set of boundary conditions and presented their results by using the
parametric space of Arnol’d tongues.
Although a good deal of qualitative insight can be gained using approximate ana-

lytical techniques, finite element analysis is well suited to study this more complex behavior
[10–12,14,26,27]. Since it is difficult to use the static path-following method to locate the
disconnected stable equilibriums before and after the jump, different schemes are used to find
the stable equilibrium path after the jump. One scheme is to guess a solution which is away
from the primary post-buckling equilibrium as the starting computational point for the
jumped branch. After the convergence of this trial solution is achieved, a standard path-following
method is continued to find the jumped path [14,27]. Another is the well-known hybrid
static–dynamic computational approach which is developed and used by Riks et al. [10] to
model one bay of Stein’s aluminum plate. It has been used widely to solve various problems, for
example, the damage of a compressed sandwich panel [11] and the mode jumping of the thermally
loaded plate [26].
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To broaden the investigation of mode jumping from the static approach to dynamics and from
mechanical loading situations to those of thermal loading, in this paper, we use both finite element
and analytical approaches to study a thermally loaded simply-supported plate with fixed in-plane
boundary conditions. Unlike its mechanically-loaded counterpart, this kind of thermally loaded
plate demonstrates strong geometric non-linearity, which is generated by the coupling between the
flexural and in-plane deformations. Linear analysis shows that there is no compound point in the
plot describing the critical load versus aspect ratio. Moreover, the secondary bifurcation occurs
far beyond the primary buckling point, e.g., the secondary buckling load is about 46 times that of
the critical buckling load for a particular aspect ratio. Therefore, it is no surprise that the jumping
behavior cannot be predicted correctly without sufficient assumed modes. A hybrid static–dynamic
finite element strategy is used for transition between the static and dynamic analyses, while for the
analytical approach—by assuming a series of linear buckling modes for the transverse
deflections—the governing partial differential equations (PDEs) are reduced to a series of
amplitude equations (ODEs) with the Galerkin procedure. The numerical continuation package
AUTO [28] is then used to track the solution path and log the bifurcation points for these ODEs.
The amplitude contributions from each mode to the post-primary and post-secondary equilibrium
states are studied systematically. Natural frequencies and vibration mode shapes are monitored,
as well as the equilibrium path toward the secondary buckling. The dynamic character of the snap
is captured by the transient (or non-stationary) analysis in which a linear sweep scheme is
implemented. The hysteretic behavior, which is best represented by the load versus displacement
relationship, is obtained by first increasing the temperature beyond the secondary bifurcation
point, then decreasing it so that the plate jumps back to its original configuration. Comparison
between the analytical and finite element results shows good agreement.

2. Analytical method

2.1. Partial differential equations

Consider a thermally loaded isotropic rectangular plate with uniform thickness h and edge
dimensions a and b; shown in Fig. 1, in which the xy plane coincides with the midplane. Three
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representative nodes (1,2,3) located on the central line with respect to the plate width are
monitored for deflection and dynamic response. The components of the displacement at a point,
occurring in the x; y; z directions, are denoted by uðx; y; tÞ; vðx; y; tÞ; and wðx; y; tÞ; respectively. In
the following analysis, a small out-of-plane initial imperfection w0ðx; yÞ is also taken into account.
The dynamic behavior of a thin post-buckled plate with initial imperfection is described by the

von K!arm!an large displacement equation and the associated compatibility equation [16,22,29],
which can be written

Dr4ðw � w0Þ þ m
@2w

@t2
þ C

@w

@t
þ Dp ¼ Fyywxx þ Fxxwyy � 2Fxywxy; ð1Þ

r4F ¼ EhððwxyÞ
2 � ðw0xyÞ

2 � wxxwyy þ w0xxw0yyÞ; ð2Þ

where subscripts denote partial differentiation with respect to the variable, for example, ð Þxx ¼
@2ð Þ=@x2; D ¼ Eh3=12ð1� n2Þ is the flexural rigidity, m is the mass density per unit area, C is the
viscous damping, Dp is the vertical loading per unit area, E is Young’s modulus, n is the Poisson
ratio, and F is the Airy stress function, defined by

Nx ¼
@2F

@y2
; Ny ¼

@2F

@x2
; Nxy ¼ �

@2F

@x@y
; ð3Þ

where Nx; etc., indicate the in-plane stress resultants.
Membrane forces Nx and Ny can be further considered to be composed of two parts: the

uniformly distributed forces (Px and Py) and the variational ones (Fp
yy and Fp

xx). Their relationship
can be described by the following expressions:

Nx ¼ Px þ Fp
yy; Ny ¼ Py þ Fp

xx: ð4; 5Þ

It will be seen later that this kind of partition of the membrane forces is consistent with that of the
Airy stress function obtained by solving the compatibility equation (2), regardless of what specific
out-of-plane boundary conditions are applied on the edges.
Introducing dimensionless quantities indicated by a tilde,

x ¼ a *x; y ¼ a *y; w ¼

ffiffiffiffiffiffi
D

Eh

r
*w; F ¼ D *F;

Nx ¼
D

a2
*Nx; Ny ¼

D

a2
*Ny; Nxy ¼

D

a2
*Nxy; m ¼

D

a4
*m;

C ¼

ffiffiffiffiffiffiffiffi
Dm

p
a2

*C; Dp ¼
D

a4

ffiffiffiffiffiffi
D

Eh

r
dp; u ¼

D

Eha
*u; v ¼

D

Eha
*v;

t ¼

ffiffiffiffiffiffiffiffi
a4m

D

s
t; r ¼

b

a
ðaspect ratioÞ; ð6Þ

enables Eqs. (1)–(3) to be simplified as

*r4ð *w � *w0Þ þ *w00 þ *C *w0 þ dp ¼ *F *y *y *w *x *x þ *F *x *x *w *y *y � 2 *F *x *y *w *x *y; ð7Þ

*r4 *F ¼ *w2
*x *y � *w2

0 *x *y � *w *x *x *w *y *y þ *w0 *x *x *w0 *y *y; ð8Þ
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*N *x ¼ *F *y *y; *N *y ¼ *F *x *x; *N *x *y ¼ � *F *x *y; ð9Þ

where the primes denote differentiation with respect to t; the non-dimensional time, and the non-
dimensional bi-harmonic operator is defined as

*r4ð Þ ¼
@4ð Þ
@ *x4

þ 2
@4ð Þ

@ *x2@ *y2
þ
@4ð Þ
@ *y4

:

For simplicity, in the remainder of the paper we use the non-dimensional values and drop the
tilde.

2.2. Boundary conditions

For a plate with unit length and width r; all edges are assumed to be simply supported but
clamped in plane, i.e., longitudinal and lateral edges are prevented from moving in the x or y
directions, respectively. Thus, the boundary conditions can be written as

w ¼ wxx ¼ 0; Nxy ¼ 0; u ¼ 0 at x ¼ 0; 1;

w ¼ wyy ¼ 0; Nxy ¼ 0; v ¼ 0 at y ¼ 0; r: ð10Þ

Out-of-plane boundary conditions are satisfied by expanding the flexural deflection with a series
of linear buckled modes which satisfy the boundary constraints automatically. In-plane boundary
conditions given in Eq. (10), however, cannot be implemented directly by an analytical approach,
in which constraint equations are usually expressed by the in-plane displacement variables and
edge forces. This makes it more difficult to solve a thermally loaded problem than to obtain
solutions in a mechanical loading situation because in the former case even the uniformly
distributed forces Px and Py cannot be given explicitly. Therefore, it is necessary to find the
implicit relationship between those in-plane displacements and edge forces.
For a plate with all edges fixed in plane, we need constraint equations to prevent edges from

moving. This is achieved by introducing the following zero end-shortening conditions and from
which Px and Py can be determined:Z 1

0

@u

@x
dx ¼ 0;

Z r

0

@v

@y
dy ¼ 0: ð11Þ

The above two integral conditions should be satisfied across the width and along the length,
respectively. It will be shown later that for a simply-supported plate with transverse deflection w
expanded in double sine waves, these zero end-shortening conditions are satisfied exactly, not in
an average sense as indicated in some previous papers [3,7]. By considering the strain-
displacement and stress–strain relationships, the above equations are transformed to

Px � nPy ¼ dT þ
Z 1

0

Fp
yy � nFp

xx �
1

2

@w

@x

� �2

þ
1

2

@w0

@x

� �2
" #

dx;

Py � nPx ¼ dT þ
1

r

Z r

0

Fp
xx � nFp

yy �
1

2

@w

@y

� �2

þ
1

2

@w0

@y

� �2
" #

dy; ð12Þ
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where

dT ¼
Eha2

D
aDT ð13Þ

is the non-dimensional temperature change.
The uniformly distributed in-plane stress resultants Px and Py are then obtained as

Px ¼
%P þ n %Q
1� n2

þ
dT

1� n
; Py ¼

%Q þ n %P
1� n2

þ
dT

1� n
; ð14; 15Þ

where

%PðyÞ ¼
Z 1

0

Fp
yy � nFp

xx �
1

2

@w

@x

� �2

þ
1

2

@w0

@x

� �2
" #

dx; ð16Þ

%QðxÞ ¼
1

r

Z r

0

Fp
xx � nFp

yy �
1

2

@w

@y

� �2

þ
1

2

@w0

@y

� �2
" #

dy: ð17Þ

It is clear that before buckling, %P ¼ %Q ¼ 0 and Px ¼ Py ¼ dT=ð1� nÞ as expected in
conventional linear buckling or small displacement analysis; however, this no longer holds when
the plate is heated into the post-buckling regime since at this stage the coupling of the transverse
displacement takes effect.

2.3. Transformation to ordinary differential equations

For a simply-supported plate, both the transverse deflection w and the initial imperfection w0

may be expressed as double Fourier series:

wðx; yÞ ¼
X
k;l

Akl sinðkpxÞ sin
lpy

r

� �
; ð18Þ

w0ðx; yÞ ¼
X
k;l

A0kl sinðkpxÞ sin
lpy

r

� �
; ð19Þ

where Akl represents the amplitude of the buckling mode with k and l half-waves over the
longitudinal and lateral directions, respectively; odd values of the subscripts k and l denote the
symmetrical modes while even values denote the antisymmetrical ones.
The spatial–temporal PDEs and the integral constraint equations which govern the dynamic

behavior of the plate can be transformed to a system of non-linear ODEs and algebraic equations
governing the modal amplitudes by expanding the former in terms of the expanded displacement
forms described in Eqs. (18) and (19).
To achieve this, we first solve the compatibility equation. Just as we partition the in-plane

resultants Nx and Ny into the uniformly distributed part and the variational part in Section 2.2,
the general solution of Eq. (8) is assumed to consist of a homogeneous solution Fhðx; yÞ and a
particular solution Fpðx; yÞ:

F ðx; yÞ ¼ Fhðx; yÞ þ Fpðx; yÞ; ð20Þ
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where the homogeneous solution takes the form

Fhðx; yÞ ¼
y2

2
Px þ

x2

2
Py: ð21Þ

Substituting Eqs. (18) and (19) into Eq. (8) and carrying out some trigonometric, algebraic, and
calculus operations, the particular part of the Airy’s function is obtained as

Fpðx; yÞ ¼
X

k

X
l

X
m

X
n

r2

4

� �
ðAklAmn � A0klA0mnÞST

xCklmnSy; ð22Þ

where

Sx ¼
cosðk þ mÞpx

cosðk � mÞpx

( )
; Cklmn ¼

C1klmn C2klmn

c3klmn C4klmn

" #
; Sy ¼

cosðl þ nÞpy

r

� �
cosðl � nÞpy

r

� �
8>>><
>>>:

9>>>=
>>>;
: ð23Þ

The coefficients in matrix Cklmn are given by

C1klmn ¼
ðklmn � k2n2Þ

½ðk þ mÞ2r2 þ ðl þ nÞ2	2
; C2klmn ¼

ðklmn þ k2n2Þ

½ðk � mÞ2r2 þ ðl þ nÞ2	2
;

C3klmn ¼
ðklmn þ k2n2Þ

½ðk þ mÞ2r2 þ ðl � nÞ2	2
; C4klmn ¼

ðklmn � k2n2Þ

½ðk � mÞ2r2 þ ðl � nÞ2	2
; ð24Þ

in which C4klmn ¼ 0 if k ¼ m and l ¼ n:
Clearly, the Airy stress function Fðx; yÞ satisfies the zero shear stress boundary conditions along

edges (Eq. (10)). We are now able to obtain the homogeneous solution Fhðx; yÞ by solving the zero
end-shortening conditions presented in Eq. (12), which are rewritten as

Px � nPy ¼ dT þ %PðyÞ; Py � nPx ¼ dT þ %QðxÞ; ð25Þ

where dT represents the non-dimensional end shortening attributed to the temperature rising,
while %PðyÞ; %QðxÞ; defined in Eqs. (16) and (17), denote the end shortening caused by the particular
solution of the compatibility equation.
The two end-shortening conditions given by Eq. (12) seem too rigorous to be satisfied exactly,

since this requires that for any lines with fixed y values, the shortening through the length should
be the same, and the similar condition should also be satisfied for each line across the width.
However, we will prove that under the assumption of the double Fourier expansion of the
transverse deflection wðx; yÞ the end-shortening components %PðyÞ and %QðxÞ are indeed constant,
i.e., they do not depend on x or y:
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Substituting Eqs. (18), (19), and (22) into the first equation (12), after some algebraic and
calculus manipulations, we obtain

%PðyÞ ¼ �
p2

8

X
l;k;n
lan

ðAklAkn � A0klA0knÞ
k2ðn � lÞ

n þ l
cos

ðl þ nÞpy

r

�

þ
k2ðn þ lÞ
ðn � lÞ

cos
ðl � nÞpy

r

�
�
p2

8

X
k

X
l

ðA2
kl � A2

0klÞk
2:

Taking the derivative of %PðyÞ; it is easy to verify that d %PðyÞ=dy ¼ 0; therefore %P ¼ constant: By the
same reasoning, we get %Q ¼ constant: Since both of these two shortening components are
constant, their values can be easily obtained by integrating Eqs. (16) and (17) with respect to y and
x; respectively:

%P ¼
Z r

0

Z 1

0

½Fp
yy � nFp

xx �
1
2
ðw2

x � w2
0xÞ	 dx dy

¼ �
p2

8

X
k

X
l

ðA2
kl � A2

0klÞk
2: ð26Þ

Similarly,

%Q ¼ �
p2

8r2

X
k

X
l

ðA2
kl � A2

0klÞl
2: ð27Þ

Thus, the homogeneous solution Fh can be obtained by substituting Eqs. (26) and (27) into
Eqs. (14) and (21).
Finally, the non-dimensional dynamic von K!arm!an equation (7) can be reduced to a series of

non-linear ODEs with respect to the modal amplitudes Akl by using a Galerkin procedure with a
weighting function of fpqðx; yÞ: The weighting function fpqðx; yÞ takes the form

fpqðx; yÞ ¼ sinðppxÞ sin
qpy

r

� �
; ð28Þ

and the right-hand side of von K!arm!an’s equation f ðx; yÞ and the inner product of any two
functions ½gðx; yÞ; hðx; yÞ	 are defined as

f ðx; yÞ ¼ f hðx; yÞ þ f pðx; yÞ ¼def Fyywxx þ Fxxwyy � 2Fxywxy; ð29Þ

½gðx; yÞ; hðx; yÞ	 ¼def
Z 1

0

Z r

0

gðx; yÞhðx; yÞ dx dy; ð30Þ

where f hðx; yÞ and f pðx; yÞ are components attributed to the contribution of the homogeneous and
particular part of Airy’s stress function, respectively.
Substituting Eqs. (18)–(21) into Eq. (7) and using Galerkin’s procedure, we get

.Amm þ C ’Amm þ ðAmn � A0mnÞ m2 þ
n

r

� �2
� �2

p4

¼
4

r
½ f hðx; yÞ;fmnðx; yÞ	 þ ½ f pðx; yÞ;fmnðx; yÞ	 � ½dpðx; yÞ;fmnðx; yÞ	

� �
; ð31Þ
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where the dots denote differentiation with respect to the non-dimensional time, t: In addition, the
first two terms on the right-hand side represent the geometric non-linearity caused by the large
deflections of the plate, while the last term denotes the contribution from the external force.
By substituting Eqs. (18)–(24) and (28) into Eq. (30) and making use of the orthogonal

properties of the integration of trigonometric functions, the geometric non-linear terms in Eq. (31)
can be obtained explicitly as

½ f hðx; yÞ;fmnðx; yÞ	 ¼ �
p2r
4

Amn Pxm2 þ Py

n

r

� �2
� �2

; ð32Þ

½ f pðx; yÞ;fmnðx; yÞ	 ¼
p4

16

X
i

X
j

X
k

X
l

X
m

X
n

AijðAklAmn � A0klA0mnÞVT
xDVy; ð33Þ

where

D

¼

c1½ðk þ mÞj � ðl þ nÞi	2 c1½ðk þ mÞj þ ðl þ nÞi	2 c3½ðk þ mÞj � ðl � nÞi	2 c3½ðk þ mÞj þ ðl � nÞi	2

c1½ðk þ mÞj þ ðl þ nÞi	2 c1½ðk þ mÞj � ðl þ nÞi	2 c3½ðk þ mÞj þ ðl � nÞi	2 c3½ðk þ mÞj � ðl � nÞi	2

c2½ðk � mÞj � ðl þ nÞi	2 c2½ðk � mÞj þ ðl þ nÞi	2 c4½ðk � mÞj � ðl � nÞi	2 c4½ðk � mÞj þ ðl � nÞi	2

c2½ðk � mÞj þ ðl þ nÞi	2 c2½ðk � mÞj � ðl þ nÞi	2 c4½ðk � mÞj þ ðl � nÞi	2 c4½ðk � mÞj � ðl � nÞi	2

2
66664

3
77775;

Vx ¼

1
2

if p ¼ i þ k þ m; else 0

71
2
if p ¼ 7ði � k � mÞ; else 0

71
2
if p ¼ 7ði þ k � mÞ; else 0

71
2
if p ¼ 7ði � k þ mÞ; else 0

8>>><
>>>:

9>>>=
>>>;
; Vy ¼

r
2

if q ¼ j þ l þ n; else 0

7r
2
if q ¼ 7ð j � l � nÞ; else 0

7r
2
if q ¼ 7ð j þ l � nÞ; else 0

7r
2
if q ¼ 7ð j � l þ nÞ; else 0

8>>><
>>>:

9>>>=
>>>;
;

and coefficients c1; c2; etc., are given in Eq. (24).
Since later in Section 3, we will simulate the transient response of the thermally loaded plate

under a small perturbation generated by a vertical concentrated force, which is, for example,
generated by hitting the plate with an impact hammer, the external force in Eq. (31) now takes the
form dp ¼ d %pðtÞdðx � x0Þdðy � y0Þ: Therefore, the third component in Eq. (31) becomes

½dpðx; yÞ;fmnðx; yÞ	 ¼
Z 1

0

Z r

0

d %p dðx � x0Þdðy � y0Þ sinðmpxÞ sin
npy

r

� �
dx dy

¼ d %pðtÞ sinðmpx0Þ sin
npy0

r

� �
: ð34Þ

3. Static and dynamic context of the behavior

In this paper, both analytical and finite element approaches are used to analyze the static and
dynamic behavior of the mode-jumping phenomenon of the plate as we increase and decrease the
temperature quasi-statically or slowly, i.e., with a certain rate of heating.
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3.1. Static equilibrium and free vibrations

For the analytical approach, the stationary solution of the non-linear ODEs derived in
Section 2.3 is calculated numerically with AUTO [28], a continuation package. With the
temperature as the control parameter, AUTO will follow the equilibrium path and log the
bifurcation points. By choosing different combinations of modal amplitudes Akl ; we can study the
effect of various assumed modes on the secondary bifurcation points and the stability of the
equilibrium paths.
The amplitude equations presented in Eq. (31) can be written in matrix form as

.Aþ CA
’Aþ KAA ¼ fðA; dTÞ; ð35Þ

where vector A consists of amplitudes of the assumed modes, CA and KA represent the
corresponding damping and stiffness matrices, and fðA; dTÞ denotes non-linear force terms.
Natural frequencies and vibration mode shapes (expressed in assumed modal amplitudes) of the

plate can then be calculated by locally linearizing the dynamic system at known equilibrium states
and solving the associated eigenvalue problem. Such a procedure enables us to trace the
characteristics of free vibrations of the plate as we vary the temperature quasi-statically.
For the finite element method, consider a structural system with d; a vector of nodal degrees of

freedom and subjected to the temperature variation DT : The governing equation of motion takes
the form

M.dþ C’dþ fðd;DTÞ ¼ 0 ð36Þ

where f ¼ f iðdÞ þ feðd;DTÞ; with the superscripts on function f indicating the non-linear internal
and external loads, and subsumes the static behavior associated with the equilibrium condition

f ¼ f iðdÞ þ feðd;DTÞ ¼ 0: ð37Þ

We are especially interested in the stability of equilibrium, given by the Jacobian

Kðd;DTÞ ¼
@fðd;DTÞ

@d
;

such that if K is positive definite the equilibrium is stable (in the Lyapunov sense). These stability
analyses of the states on the equilibrium path are conducted to locate the unstable critical point.
The procedure of free vibration analysis is similar to that of the analytical approach. All finite
element analyses are performed using the ANSYS software.

3.2. Transient analysis

In this paper, we are primarily interested in the fully dynamic context of the snap phenomenon
especially when the temperature passes the secondary critical point. To achieve this goal, we
introduce a transient analysis approach which consists of a linear sweep in temperature of the
form

DT ¼ DT0 þ Rt; ð38Þ
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where DT is the change of the temperature with respect to the ambient, and R is the rate of
heating [30].
It will be shown later that the dynamic snap actually occurs when the temperature just passes its

critical value and a different equilibrium path results. After that, the temperature is reduced and
the temperature is followed (dynamically) downward. It is interesting to note that after an
intermediate snap, the new branch finally snaps back to its original path.
For the analytical approach, the amplitude equation (35) is solved numerically by using a

Runge–Kutta–Verner fifth and sixth order method. The starting temperature change, DT0; is set
to zero and different values of the sweeping rate R are used to study their effect on the prediction
of the secondary critical point. To encourage the mode jumping, a small initial dynamic
perturbation is introduced by applying a vertical concentrated impulse force, which is similar to
the usual approach used in a practical experiment where an impact hammer is used. This is
because without such perturbation the solution will always follow its original equilibrium path
even though the secondary critical point has already been passed and the equilibrium state
becomes unstable, no matter how slow the temperature rises.
For the finite element method, a hybrid static–dynamic method is used [10]. The procedure

consists of a combination of the classical path-following strategy with a dynamic approach, where
the first method is used to follow the quasi-static (stable) part of the branch until the temperature
approaches the secondary bifurcation value, then the transient analysis is initiated and the
temperature keeps rising beyond the critical value. The starting value of DT0 is set near the
secondary buckling temperature to expedite the computational process. Rayleigh damping of the
following form is assumed:

D ¼ aMþ bK; ð39Þ

where a and b are the mass and stiffness scalar coefficients which can be selected by analogy to a
single-degree-of-freedom oscillator. Suppose the system has a fundamental natural frequency fn

and the non-dimensional damping ratio of the plate is z: These proportional coefficients can be
determined as

a ¼ 2pz fn; b ¼
z

2pfn

: ð40Þ

4. Numerical results

4.1. Model description

The methods outlined are used to analyze the mode jumping phenomenon of an isotropic
aluminum rectangular plate with all edges simply supported and fixed in plane. The plate
model under analysis is shown in Fig. 1. The plate dimensions are length a of 762 mm ð30 inÞ;
width b of 282:2 mm ð11:1 inÞ; and thickness t of 1:9844 mm ð5=64 inÞ: The material properties
used in the analysis are: Young’s modulus E ¼ 70 GPa; Poisson’s ratio n ¼ 0:33; thermal
expansion coefficient a ¼ 23
 10�6; mass density r ¼ 2:7143 kg=m3: In the dynamic analysis,
the non-dimensional damping ratio z is set as 0.05. The x co-ordinates for three monitoring
points located on the central line of the plate are 0:25a; 0:3a and 0:5a: Note, for analytical
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approach the corresponding non-dimensional monitoring points are ð0:25; r=2Þ; ð0:3; r=2Þ; and
ð0:5; r=2Þ:
Since in practical experiments a perfect geometry will not occur, all the following numerical

calculations, except specifically indicated, are performed on a plate with an initial imperfection in
its first buckling mode. The maximum original transverse deflection of the plate is set to 30% of
the plate thickness.
Finite element results are obtained from a baseline FE model, consisting of 640 eight-node shell

elements (type SHELL93 in ANSYS) with 40 elements through the length and 16 elements across
the width. Higher and lower mesh densities have also been used to check the convergence of the
equilibrium path and the sensitivity of the onset of the secondary bifurcation. No significant
difference was found.

4.2. Quasi-static analysis

The lowest three linear buckling loads for thermally loaded perfect plates with different aspect
ratios are calculated using the finite element method and the results are shown
in Fig. 2. With the increase of aspect ratio, although the first buckling mode always takes the
(1,1) form, the higher buckling modes may change their waveforms. For example, as r ¼ a=b
passes through 1.4 the second lowest buckling modes will switch from (2,1) to (3,1); while
the reaching of r ¼ 2:0 indicates the switching of the third lowest mode from (2,1) to (4,1).
It is interesting to note that unlike the (mechanical) axially compressed case [3,4,21,25], the
lowest two load lines in Fig. 2 never cross each other, thus no compound buckling points exist
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Fig. 2. Linear buckling loads for simply supported plates with various aspect ratios.
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(on the lowest load line). The separation of load lines gives a hint that for a perfect plate with a
particular aspect ratio the coupling effect between two primary post-buckling branches emanating
from the first two critical points is not strong enough to dominate the secondary buckling
behavior, and the secondary bifurcation point happens deeply in the post-buckling regime.
Let us consider a plate model described in Section 4.1, which has an aspect ratio of 0.37.

In order to study the dependency of the secondary bifurcation and mode jumping on the
form of assumed mode shapes, different combinations of the modal components are used
and the results calculated by AUTO are listed in Table 1. For comparison purposes, finite
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Table 1

Studying secondary bifurcation with various combinations of assumed modes

Assumed modes Secondary bifurcation temperature Secondary

bifurcation type

Notes

fmga Non-dimensional Dimensional

fng dT2 DT2 ðCÞ

f1; 2; 3; 4; 5g
f1g

/ / Primary post-

buckling path

always stable

No mode

jumping

f1; 2; 3g
f1; 2g

1:0769
 103 29.695 Super-critical No mode

jumping

f1; 2; 3g
f1; 3g

/ / Primary post-

buckling path

always stable

No mode

jumping

f1; 2; 3; 4; 5g
f1; 2g

1:6093
 103 44.375 Super-critical No mode

jumping

f1; 2; 3; 4; 5g
f1; 3g

/ / Primary post-

buckling path

always stable

No mode

jumping

f1; 3; 5; 7; 9; 11g
f1; 2g

2:2708
 103 62.615 Sub-critical No mode

jumping

f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11g
f1; 2g

2:2708
 103 62.615 Sub-critical No mode

jumpingb

f1; 2; 3; 4; 5; 6; 7; 8; 9g
f1; 2; 3g

2:5139
 103 69.312 Sub-critical Mode jumping

happens

Finite element method

(path following)

2:4066
 103 66.36 / /

am; n denotes mode shape Amn sinðmpxÞ sinðnpy=rÞ:
bAlthough in this case new stable branches exist, they only occur in the range of dT ¼ 2:5836
 103– 4:5765
 103 or

DT ¼ 71:12–126:19 ðCÞ; which is beyond the secondary buckling temperature, therefore no mode jumping happens.
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element results are also included. For all cases, the primary critical temperature of a perfect
plate calculated by the analytical approach is dT ¼ 54:8187 or DT ¼ 1:5116C; which agrees
well with the value of DT ¼ 1:5112C obtained from the finite element analysis. The
secondary buckling temperature and the mode jumping behavior, however, are highly case
dependent. It is easy to observe that secondary bifurcation occurs only when the assumed
components contain the antisymmetric term in the y direction, i.e., n ¼ 2; without such a
component, the post-buckling branch is always stable. This indicates that the y direction
antisymmetric modes play the role of destabilizing the primary post-buckling path. Mode
jumping phenomenon can only be described correctly in the last analytical case with fmg ¼
f1; 2; 3;y; 9g and fng ¼ f1; 2; 3g; where DT2 is predicted as 69:31C; fairly close to the
finite element result ð66:32CÞ: Although the secondary critical temperature and bifurcation
type can be obtained correctly when wðx; yÞ contains modes with enough numbers of
half-waves along the x direction but only the first two half-waves along the y direction, the
jumped path cannot be predicted correctly. The above analyses suggest that if a modal
approach is used, mode jumping can only be predicted correctly when enough modes are
included.
In all the following analyses, we will use the modal combination of fmg ¼ f1; 2; 3;y; 9g

and fng ¼ f1; 2; 3g: The bifurcation diagram is shown in Fig. 3. The secondary bifurcation
point occurs far from its primary buckling point, with dT2=dT1 ¼ 45:87: This may be attributed
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Fig. 3. Bifurcation diagram. Stable paths are shown as solid lines and unstable paths as broken lines; bifurcation points

are indicated by square symbols. Deformation at ðx; yÞ ¼ ð1=4; r=2Þ:

H. Chen, L.N. Virgin / Journal of Sound and Vibration 278 (2004) 233–256246



to the strong non-linearity caused by the in-plane constraints. As the temperature increases
across the secondary critical value, the primary post-buckling branch loses its stability and the
plate will jump to one of the two stable equilibria. By carefully observing the diagrams of
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Fig. 4. Amplitude contributions: (a) bifurcation diagram; (b) A11–A23; (c) A31–A43; (d) A51–A63; (e) A71–A83; (f) A91–A93:
Stable paths are shown as solid lines and unstable paths as broken lines.
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amplitude contributions, shown in Fig. 4, we find that the initial post-buckling branch consists
only of purely symmetric modes, e.g., A11; A13; A31; A33; A51; A53; A71; A73; A91 and A93: The
stable target branches (connected to the initial post-buckling path through unstable branches), on
the other hand, contain contributions from the additional purely unsymmetrical modes, such as
A22; A42; A62 and A82: The mixed symmetrical modes, for example, A12; A41; etc., have small or no
effect on capturing the snapping phenomenon in the static analysis. Therefore, it is reasonable to
believe that only with at least the above 14 modes can we predict the mode jumping correctly.
Additional information about static deformation shapes of the plate at DT2E61C (near the
snapping point) on the primary post-buckling path and the two possible target branches are
presented in Fig. 5. As expected, on the primary post-buckling branch the static deformation
takes the pure symmetric form while on the two target stable branches the shape is antisymmetric
with respect to the x-axis.
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Fig. 5. Static deformation shapes at different branches: (a) at primary post-buckling path; (b) at top jumped branch;

(c) at the bottom jumped branch.
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4.3. Free vibration analysis

Natural frequencies and vibration modes are calculated as we trace the equilibrium before and
after snapping. A comparison of the lowest three natural frequencies calculated by the analytical
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Fig. 6. Natural frequencies as a function of temperature: (a) in the range of primary post-buckling path, including

FEM results (indicated by lines); (b) full range analysis. Circled symbols indicate sample points where vibration modes

are plotted in Figs. 7 and 8.
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method with those obtained by the finite element analysis is presented in Fig. 6.1 These results
agree closely in a quite wide range (up till dT2=dT1 ¼ 22) and only when near the secondary
bifurcation point, where the fundamental frequency drops to zero, do their discrepancies become
obvious. The analytical result is still adequate since the relative error of the secondary critical
temperatures predicted by the two methods is only 4.5%. It is worth mentioning that in the
primary post-buckling regime the exchange of vibration modes occurs at several points, between
which the fundamental mode shape remains similar but as they are passed across from the left the
fundamental mode will change to a form corresponding to a previously higher frequency. We call
this phenomenon the dynamic mode shifting. Similar behavior can be found in a linear analysis of
an axially loaded plate [31]. However, full range non-linear analysis shows that no such exchange
of modes happens after mode jumping (see Fig. 6(b)). Since the two target branches demonstrate
some kind of symmetric relationship, which is verified in the static deformation plot (Fig. 5), it is
no surprise to find that at the corresponding points on these branches the natural frequencies are
identical.
This mode shifting phenomenon is further illustrated in Figs. 7 and 8, where the fundamental

vibration mode is shown transforming from the initially f1; 1g form to f2; 1g; f3; 1g; f1; 2g; and
higher order forms. The amplitude eigenvector is normalized such that the maximum absolute
value of its components is set to 1 and only those whose absolute value is greater than 0.02 are
plotted. Dominant amplitude components appearing in the plots suggest that although the static
analysis of mode jumping can be achieved with only the pure symmetric and pure antisymmetric
assumed (static deflection) modes, the dynamic characteristics of such a phenomenon cannot be
captured without the mixed mode shapes. Another interesting phenomenon is found by studying
the projections of various vibration mode shapes on the xy plane. Before snapping, all projections
are symmetric with respect to both the x- and y-axis and the nodal lines of the plate remain
straight; after jumping, however, this neatly organized structure is broken, demonstrated by the
curved nodal lines and the change of the projection form (it becomes symmetric with respect to the
center of the plate).

4.4. Transient analysis

A linear sweep scheme (Eq. (38)) is used in the transient analysis of the mode jumping. To study
the effect of the heating ratio qualitatively, three different values, i.e., DT=Dt ¼ 100C; 10C and
1C=s are used in the analytical approach and a viscous type of damping is assumed. As can be
seen in Fig. 9(a), with an unrealistically fast rate of temperature change ðR ¼ 100C=sÞ; the
response curves follow steadily along the initial equilibrium paths even when the temperature
passes through the secondary critical value, showing no evidence of mode jumping. However, the
snapping phenomenon occurs in the last two cases. Further observation indicates a delay effect
(overshoot) on the prediction of the snapping temperature: the snapping occurs at 71C and 73C
for the heating rate of 1C=s and 10C=s; respectively, although the static analysis gives the value
69:3C: The reasons for the existence of two oscillating ranges in the response curves for the
smallest heating ratio could be explained as follows: (1) interaction between the coexisting stable
solutions. For example, the first range of oscillation (from 55C to 71C) corresponds to the
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1 In this figure different symbols are used to identify the order of the modes rather than the specific modes themselves.
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Fig. 7. Vibration mode shapes at different sampling temperatures marked correspondingly in Fig. 6(b): (a) dT=dTcr ¼
3:648
 10�3; (b) dT=dTcr ¼ 3:373; (c) dT=dTcr ¼ 7:933; (d) dT=dTcr ¼ 23:258; (e) dT=dTcr ¼ 34:751; (f) dT=dTcr ¼
42:321:
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coexistence of three stable equilibria (from 50C to 69:3C), see Fig. 3; (2) slow rate of
temperature increase enables the system to accumulate the kinetic energy caused by the
small perturbations during numerical computation; (3) effect of nearby bifurcation points
(see also Fig. 3). With moderate heating rate, the snapping phenomenon can be captured.
However, this jumping to the far field stable branch is not unique. It depends on the rate of
heating as illustrated in Figs. 9(b) and (c). This kind of indeterminacy has been observed in other
dynamical systems [32].
Finite element analysis is also performed to study the snapping phenomenon dynamically. In

this procedure, the ascending transient integration is performed after a quasi-static analysis which
stops at DT ¼ 50C (about 80% of the secondary critical value). During the ascending transient
stage, the temperature rises from 50C to 80C and the moderate heating rate R ¼ 10C=s as
mentioned above is used. The temperature is then reduced to 40C with the same descending rate.
Fig. 10 illustrates hysteretic behavior conducted by the plate. It can be clearly observed from this
figure that as the temperature reaches the critical value ð67CÞ of the primary post-buckling
branch, there is a loss of stability and a dynamic jump occurs, resulting in a transient response
which oscillates around the new stable branch (finally coming to rest due to the presence of a small
amount of damping). Due to the dissipation of the kinetic energy, the trajectory follows this new
(stable) equilibrium path just as in the quasi-static case. The most interesting phenomenon
happens during the descending stage: after an intermediate jump which occurs at 50C
(corresponding to the bifurcation temperature at which the two target branches lose their stability
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Fig. 8. Vibration mode shape after mode jumping, point ðgÞ marked in Fig. 6(b). dT=dTcr ¼ 47:5202; A61 ¼ �1;
A32 ¼ �0:85424; A81 ¼ �0:73779; A52 ¼ �0:64559; A21 ¼ �0:37279; A41 ¼ �0:2520; A92 ¼ �0:17519; A43 ¼
�0:081812:
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in Fig. 3), the plate jumps back to its original path when the temperature is reduced to 47C: In
contrast to the analytical approach, the effect of delay caused by the sweeping of the temperature
is small. This might be due to the introduction of structural damping in the finite element
approach.

5. Concluding remarks

This paper follows a systematic investigation of the various static and dynamic characteristics
of modal shifting and mode jumping phenomena exhibited by a thermally loaded, simply-
supported, in-plane-fixed plate, using both analytical and finite element approaches. A compact
form of the formulation is developed to reduce the PDEs to a system of ODEs in the analytical
approach. By this, we can study the effects of arbitrary combinations of the assumed modal
components on the secondary bifurcation of the plate.
The lack of compound points found in the linear buckling analysis of the plate with different

aspect ratios (demonstrated by the separation of the lowest two critical loads shown in Fig. 2)
indicates that the snapping of the post-buckled plate caused by the secondary instability of the
equilibrium can only be captured by considering the coupling effects of a large number of assumed
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Fig. 9. Transient response of monitored points on the plate during temperature sweeps, analytical approach: (a) fast

heating rate ðDT=Dt ¼ 100C=sÞ; (b) moderate heating rate ðDT=Dt ¼ 10C=sÞ; (c) slow heating rate ðDT=Dt ¼ 1C=sÞ:
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modes. Without enough modes, the prediction may be even qualitatively incorrect. This can be
attributed to the strong non-linearity introduced by the in-plane constraints, which makes the
post-buckling behavior of the plate significantly different from that of an axially (mechanically)
compressed plate.
The change of natural frequencies with respect to temperature reflects the dynamic instability

characteristics of the plate and can be used to predict the onset of the snapping. A word of caution
is necessary, however. The jumping to the farfield stable states is not unique. By this, we mean that
for different initial conditions, a different choice of damping, or different ascending or descending
sweep rate, other stable post-buckling states may be reached. This is one of the major differences
between a linear and a non-linear system. In transient analysis, the dynamic response can be
affected by the coexistence of stable equilibriums, the nearby bifurcation points, and the rate of
heating.
Modal shifting phenomenon, demonstrated by the exchange of vibration modal shapes at some

particular points in the plot of temperature versus natural frequencies, does not occur in the post-
secondary buckling regime. As it is well known that bifurcation points usually indicate the
breaking of symmetry, our results suggest that while the primary critical point represents the onset
of out-of-plane deflection, the secondary critical point initiates the breaking of the symmetry of
the post-buckled shapes: on the primary post-buckling path the static deflection is symmetric to
both x- and y-axis, while on the target branches (for the mode jumping) the deflection is found to
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Fig. 10. Transient response of a specific point on the plate using moderate temperature sweep ðDT=Dt ¼ 10C=sÞ; finite
element approach. Deformation at ðx; yÞ ¼ ð0:3a; 0:5bÞ:
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be antisymmetric to both the x- and y-axis. There is breaking of symmetry of the vibrational
modes on these stable equilibrium paths.
When subjected to a non-stationary loading history, represented by the combination of the

increasing and decreasing of the loading, slender structures (especially plates) may exhibit a
hysteretic behavior. In certain cases this may be modified by an additional buckling phenomenon
where the plate response suddenly jumps to another buckled shape. Modelling and characterizing
this behavior (including the important dynamic effects) has been achieved using a hybrid
static–dynamic finite element approach.
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